Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Sci Rep ; 11(1): 17680, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1392893

RESUMEN

The Covid-19 pandemic led to threatening shortages in healthcare of medical products such as face masks. Due to this major impact on our healthcare society an initiative was conducted between March and July 2020 for reprocessing of face masks from 19 different hospitals. This exceptional opportunity was used to study the costs impact and the carbon footprint of reprocessed face masks relative to new disposable face masks. The aim of this study is to conduct a Life Cycle Assessment (LCA) to assess and compare the climate change impact of disposed versus reprocessed face masks. In total 18.166 high quality medical FFP2 face masks were reprocessed through steam sterilization between March and July 2020. Greenhouse gas emissions during production, transport, sterilization and end-of-life processes were assessed. The background life cycle inventory data were retrieved from the ecoinvent database. The life cycle impact assessment method ReCiPe was used to translate emissions into climate change impact. The cost analysis is based on actual sterilization as well as associated costs compared to the prices of new disposable face masks. A Monte Carlo sampling was used to propagate the uncertainty of different inputs to the LCA results. The carbon footprint appears to be 58% lower for face masks which were reused for five times compared to new face masks which were used for one time only. The sensitivity analysis indicated that the loading capacity of the autoclave and rejection rate of face masks has a large influence on the carbon footprint. The estimated cost price of a reprocessed mask was €1.40 against €1.55. The Life Cycle Assessment demonstrates that reprocessed FFP2 face masks from a circular economy perspective have a lower climate change impact on the carbon footprint than new face masks. For policymakers it is important to realize that the carbon footprint of medical products such as face masks may be reduced by means of circular economy strategies. This study demonstrated a lower climate change impact and lower costs when reprocessing and reusing disposable face masks for five times. Therefore, this study may serve as an inspiration for investigating reprocessing of other medical products that may become scarce. Finally, this study advocates that circular design engineering principles should be taken into account when designing medical devices. This will lead to more sustainable products that have a lower carbon footprint and may be manufactured at lower costs.


Asunto(s)
COVID-19 , Equipo Reutilizado/economía , Máscaras/economía , Pandemias , SARS-CoV-2 , Esterilización/economía , COVID-19/economía , COVID-19/epidemiología , COVID-19/prevención & control , Humanos
2.
BMJ Open ; 10(8): e039454, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: covidwho-697078

RESUMEN

OBJECTIVE: There are widespread shortages of personal protective equipment as a result of the COVID-19 pandemic. Reprocessing filtering facepiece particle (FFP)-type respirators may provide an alternative solution in keeping healthcare professionals safe. DESIGN: Prospective, bench-to-bedside. SETTING: A primary care-based study using FFP-2 respirators without exhalation valve (3M Aura 1862+ (20 samples), Maco Pharma ZZM002 (14 samples)), FFP-2 respirators with valve (3M Aura 9322+ (six samples) and San Huei 2920V (16 samples)) and valved FFP type 3 respirators (Safe Worker 1016 (10 samples)). INTERVENTIONS: All masks were reprocessed using a medical autoclave (17 min at 121°C with 34 min total cycle time) and subsequently tested up to three times whether these respirators retained their integrity (seal check and pressure drop) and ability to filter small particles (0.3-5.0 µm) in the laboratory using a particle penetration test. RESULTS: We tested 33 respirators and 66 samples for filter capacity. All FFP-2 respirators retained their shape, whereas half of the decontaminated FFP-3 respirators showed deformities and failed the seal check. The filtering capacity of the 3M Aura 1862 was best retained after one, two and three decontamination cycles (0.3 µm: 99.3%±0.3% (new) vs 97.0±1.3, 94.2±1.3% or 94.4±1.6; p<0.001). Of the other FFP-2 respirators, the San Huei 2920 V had 95.5%±0.7% at baseline vs 92.3%±1.7% vs 90.0±0.7 after one-time and two-time decontaminations, respectively (p<0.001). The tested FFP-3 respirator (Safe Worker 1016) had a filter capacity of 96.5%±0.7% at baseline and 60.3%±5.7% after one-time decontamination (p<0.001). Breathing and pressure resistance tests indicated no relevant pressure changes between respirators that were used once, twice or thrice. CONCLUSION: This small single-centre study shows that selected FFP-2 respirators may be reprocessed for use in primary care, as the tested masks retain their shape, ability to retain particles and breathing comfort after decontamination using a medical autoclave.


Asunto(s)
Infecciones por Coronavirus , Descontaminación/métodos , Equipo Reutilizado , Seguridad de Equipos , Máscaras/normas , Exposición Profesional/prevención & control , Pandemias , Neumonía Viral , Dispositivos de Protección Respiratoria/normas , Filtros de Aire , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/virología , Personal de Salud , Humanos , Tamaño de la Partícula , Equipo de Protección Personal/normas , Neumonía Viral/virología , Atención Primaria de Salud , Estudios Prospectivos , SARS-CoV-2 , Ventiladores Mecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA